
TASC Technical Specification Development
Policy and processes for developing and communicating maturity of GA4GH Technical
Specifications

Document Purpose
The GA4GH is developing data exchange standards for federated genomic data sharing. To address this, new
technical specifications are required, such as the VRS standard, which must be developed and iterated upon
through application across community implementations. This creates a tension between the need to create
products with enough stability for initial community adoption, while ensuring that they can evolve with minimal
disruption to interoperate smoothly across a diverse set of genomic data resources. Mechanisms for
communicating the stability, uptake, and development of technical specifications are therefore of paramount
importance to addressing this balance.

A maturity model is a useful mechanism for communicating varying stability across product features (e.g.
data classes or protocols) of a GA4GH standard. This is needed to help data producers at each stage of the
adoption lifecycle (Figure 1) decide on the appropriate time to engage and implement the standard. Product
features that have progressed through the maturity model should have an associated progression of support
from the GA4GH specification maintainers for message generation, translation, and validation tooling.

The purpose of this document is to clearly define the maturity model and release process for developing and
maintaining GA4GH standards, with the goal of enabling timely specification adoption by the community.

Figure 1 - The Innovation Adoption Lifecycle (source). The Innovation Adoption Lifecycle illustrates adoption rates
(y-axis) for new technologies over time (x-axis). Innovators (leftmost on the time axis) are among the first to adopt a new
technology, and laggards (rightmost) are among the last, reflecting the differing needs for innovation and stability by these

https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.1x756gyh0d77
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.hayv0rmdfa79
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.xrzt0hhbuek1
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.8r6pvv79hano
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.ugrmhmrf3sz8
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.i5ybdkaca3ah
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.igglwc7cgyv6
https://en.wikipedia.org/wiki/Technology_adoption_life_cycle

community groups. Adopters in every category along the innovation adoption lifecycle benefit from communication about
the maturity of technical specification components generated in GA4GH technical products. Communicating when a
component is ready for implementation by groups along the innovation / stability spectrum is a primary goal of the maturity
model, enabling adopters to engage at a time that is appropriate for their organizational needs.

Alignment with the GA4GH Product Development Processes
Developing a new GA4GH standard would still require that the product go through the full GA4GH Product
Development and Approval processes. This document complements those processes by providing a maturity,
release, and versioning strategy that may be referenced by the product proposal for developing, maintaining,
and extending standards using a maturity model for product features. The processes outlined here may also be
applied to technical specifications that support downstream products but are not themselves GA4GH
Standards (e.g. the GKS Common Library).

It is not expected that every category of product feature developed for a GA4GH technical specification will be
annotated with the maturity model (e.g. validation tests or documentation appendices would likely not be
annotated with maturity), though some categories (e.g. data classes and protocols) are expected to always be
annotated with maturity levels. Generally, if a product feature would be sufficient for a major or minor version
increment in the absence of a maturity system, it should be annotated with a maturity level using this system.

Feature Maturity Levels
Maturity Level Criteria

Level Criteria Specification Changes Support

Draft A requirements survey has
been done, and a draft
product feature has been
developed and documented.

Not considered safe for stable
implementation, changes may
occur at any time and are
published for evaluation by the
implementation community.

Technical artifacts,
documentation, and
validation tests are
produced and made
publicly available.

Trial Use The product feature has been
reviewed by multiple data
providers. It has been
evaluated by the community
and endorsed as ready for
widespread testing.

Expected infrequently. Changes
are made in consultation with all
participants in the product
group.

At least two reference
implementations using
the product feature, one
of which must be open.

Normative The product feature has been
sufficiently tested to warrant
long-term support from the
specification maintainers.
This is considered stable.

No backwards-incompatible
changes will happen within the
released major version.

The product feature will
be fully supported by
product reference
implementations.

Deprecated The product feature was
previously released at a trial
use or normative maturity, but
will be discontinued in a
subsequent version.

Use of the product feature will
be discontinued in a subsequent
minor version (for Trial Use
maturity) or major version (for
Normative maturity).

This product feature will
no longer be supported
once removed from the
specification.

Table 1 - Product feature maturity level criteria and commitments.

Maturity Advancement Process
Product feature maturity levels are to be reviewed and advanced by consensus among defined
decision-makers following Work Stream and GA4GH processes, in consultation with the associated product
group membership. Factors to be considered for product feature maturity advancement include the criteria

https://github.com/ga4gh/gks-common
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.ij15j31aj6jd
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.ij15j31aj6jd

specified in Table 1, the degree of adoption observed in the community, feedback provided by adopters, and
availability of specification maintainers to provide the level of support required.

Developing a Draft Product Feature
Decision-makers: Feature developers, product owners

Criteria: Draft product feature development work should be based on real use cases across multiple
environments (aligned with GA4GH Product Development 14.5). Requirements may result directly from a
landscape analysis of the problem domain, or may emerge in the course of technical specification
development. It is expected that the need for product features are first discussed in a community forum (e.g.
GitHub Discussions, product group calls).

Process: Follow the GA4GH product feature development process. As part of this process, it is expected
that consensus among the decision-makers was reached and major design decisions documented.
Disagreements are resolved per Work Stream and GA4GH processes.

Advancing from Draft to Trial Use
Decision-makers: Feature developers, product owners, product implementers

Criteria: Advancing a draft product feature to trial use should include at least two independent product
implementers that commit to supporting the draft product feature once it has been advanced to trial use. At
least one of these implementations must be open (aligned with GA4GH Product Development 14.8.3).
Advancing a product feature to trial use also mandates a minor version increment at the next release. As part
of this process, it is expected that consensus among the decision-makers was reached and major design
decisions documented. Disagreement resolution is handled per Work Stream and GA4GH processes.

Process: A ballot release is created that describes draft models under evaluation for advancement to trial
use. A survey is sent to all Product Implementers that have indicated they are implementing one or more
features under evaluation for advance to Trial Use. This survey includes:

1.​ Name of Product Implementer
2.​ Selection of a previously described implementation
3.​ If (or if multiple, which) product feature(s) are suitable for advance to Trial Use
4.​ Comments on response (e.g. explicit endorsement or description of gaps)

There is a minimum 1-week review period for Product Implementers to respond, though this may be longer at
the discretion of the product owners. More time for individual contributors may be permitted on request.

Advancing from Trial Use to Normative
Decision-makers: Feature developers, product owners, product implementers, Work Stream leads

Criteria: A normative model should have demonstrated interoperability of multiple data generation and data
consumption implementations, and should include implementations beyond those used to advance a model to
Trial Use. Advancing a product feature to normative also mandates a minor version increment at the next
release. As part of this process, it is expected that consensus among the decision-makers was reached and
major design decisions documented. Community consultation and disagreement resolution are handled per
Work Stream and GA4GH processes.

Data Class Inheritance and Property Maturity
Data models may (and often do) include child data classes that inherit properties from a parent data class.
For example, the Entity data class from the GKS Common Library provides shared properties (e.g. id, label,

https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.69fvnn4tbegq
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.j3wp65n0i1d4
https://www.ga4gh.org/our-products/development-and-approval-process/#section_5:~:text=14.5%20Development%20work%20should%20be%20based%20on%20real%20use%20cases%20across%20multiple%20environments.
https://www.ga4gh.org/our-products/development-and-approval-process/#section_4
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.69fvnn4tbegq
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.j3wp65n0i1d4
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.cg3l1hng99o2
https://www.ga4gh.org/our-products/development-and-approval-process/#section_5:~:text=14.8.3%20implementations
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.1ent9dk649ub
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.cg3l1hng99o2
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.cg3l1hng99o2
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.69fvnn4tbegq
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.j3wp65n0i1d4
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.cg3l1hng99o2
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.mg8fktfu4p72
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.1ent9dk649ub
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.1jbzkl8z59lm
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.i5ybdkaca3ah
https://github.com/ga4gh/gks-common/blob/1b7e52d6013c6785300aa933efa9210e2aafa57b/schema/gks.common-source.yaml#L7-L31

extensions) that are inherited by several child data classes across the VRS and Variant Annotation
specifications.

To address inheritance used in a data model, we place additional constraints on the maturity of data classes
and their properties. First, child data classes may not have maturity levels greater than the upstream data
classes they inherit from. Second, the properties of a data class may not exceed the maturity of the data class
as a whole. Together, these rules ensure that attention to the maturity of upstream classes is addressed first,
and that less mature data classes do not artificially convey stability (in whole or in part) through inheritance of
properties of more mature data classes.

These rules also allow for extending more mature data classes with new properties that exist in a less mature
state.

Communicating Maturity Level
Minimally, primary documentation sites (e.g. vrs.ga4gh.org) will annotate data classes, data class properties,
protocols, and other important documentation with their corresponding maturity levels.

In JSON Schema, this is accomplished using the maturity property for data classes (see the JSON Schema
maturity annotation for the VRS Allele class) or data class properties (see this JSON Schema
property-level maturity annotation in the VA-Spec Cohort Allele Frequency profile).

Product Feature Development Process
Development of GA4GH standards involves a community-oriented process that iterates on the general pattern
of:

1.​ Discuss Issues
2.​ Gather Requirements
3.​ Propose Solutions
4.​ Develop Product Feature

Discuss Issues
Emerging discussion topics should first be created as Discussions in the repository of the associated GA4GH
product (e.g. the VRS Discussion board at github.com/ga4gh/vrs/discussions). The product owners
monitor these discussions and coordinate their addition to the agenda on community calls.

Gather Requirements
On a community call, the discussion topic is first announced as a future call agendum by the product owners,
and a request made for asynchronous discussion and community-driven requirements gathering on the GitHub
Discussion thread.

As part of requirements gathering, the community is surveyed for interest in implementing the feature, and any
potential product feature implementers are expected to provide:

1.​ Name of Product Implementer
2.​ A description of their Implementation:

a.​ A short description of the implementation that will use / is using the standard
b.​ If the implementation is maintained by a Driver Project

i.​ If so, which?
c.​ If the implementation is open / public

3.​ If (or if multiple, which) product feature(s) will be used by the implementation
4.​ If the implementer will contribute product feature developer effort

An example form for collecting this information is the GKS Product Implementer Form.

https://vrs.ga4gh.org/
https://github.com/ga4gh/vrs/blob/454c5312e8e425eb170901c7520311f3ca7904e3/schema/vrs/json/Allele#L6
https://github.com/ga4gh/va-spec/blob/4c14e9f7f033dce3b6701ecd0fccca415476fd76/schema/va-spec/profiles/caf/json/CohortAlleleFrequency#L142-L143
https://github.com/ga4gh/vrs/discussions
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.j3wp65n0i1d4
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.j3wp65n0i1d4
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.cg3l1hng99o2
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.xrzt0hhbuek1
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.69fvnn4tbegq
https://docs.google.com/forms/d/e/1FAIpQLSfVKA6LmeDNYxH7ssnyk0ifRtLCgQKlZfoUzXxzO-h6JkX0og/viewform?usp=sf_link

It is expected that there will be at least two product implementers supporting a product feature, and that at
least one implementation will be open. It is also expected that at least one product implementer will contribute
product feature developer effort.

Once the above criteria are met, the development process may advance.

Propose Solutions
Product implementers should propose solutions on the GitHub Discussion thread. On a subsequent call, the
topic is raised for review of requirements and discussion of proposed solutions. Action items may include
advancing to solution implementation, furthering investigation of requirements, or continued discussion on a
subsequent call. When one or more solutions are identified as ready to advance to implementation, a GitHub
Issue is created (e.g. the VRS Issue board at github.com/ga4gh/vrs/issues) and assigned to one or more
feature developers.

Develop Product Feature
The assigned feature developers will develop the product feature on a separate feature branch reflecting the
associated GitHub Issue, and make a Pull Request for community review. The product owners are
responsible for review and recommend action on Pull Requests within 2 weeks. Once merged, the product
feature is developed.

Specification Releases and Versioning
Versioning
Versions are used to identify releases of technical specifications, not to individual product features.

Technical specification development is intrinsically linked to policy surrounding major and minor version
identification, which follow semantic versioning v2 (SemVer; semver.org) practices for API versioning. Version
syntax follows SemVer syntax. Examples of how product features at different maturity levels are applied to the
SemVer major/minor/patch syntax as follows:

Major Version Increment
●​ Backwards-incompatible changes to a normative product feature
●​ Backwards-incompatible changes to property names of a previously-released normative data class
●​ Backwards-incompatible changes to the definition of a previously-released normative data class
●​ Backwards-incompatible changes to the digests of previously-released normative data class (as

applicable)
●​ Addition of required fields to previously-released normative data class

Minor Version Increment
●​ Backwards-incompatible changes to a trial use product feature
●​ Addition of optional fields to data models at the trial use or normative level
●​ Release of a new product feature at the trial use or normative level
●​ Backwards-incompatible changes to property names of a previously-released trial use data class
●​ Backwards-incompatible changes to the definition of a previously-released trial use data class
●​ Backwards-incompatible changes to the digests of previously-released trial use data class (as

applicable)
●​ Addition of required fields to previously-released trial use data class

Patch Version Increment
●​ A new product feature at the draft maturity level

https://github.com/ga4gh/vrs/discussions
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.69fvnn4tbegq
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.69fvnn4tbegq
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.j3wp65n0i1d4
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.sz593b8vre9l
https://semver.org/#semantic-versioning-200

●​ Any changes made to draft product features
●​ Addition of implementation guidance, tests, or other supporting product features that do not directly

affect data compatibility

Versioning of approved GA4GH standards should additionally follow the procedures for GA4GH Product
Updates. Specifically, advancement of data classes to the trial use or normative levels must be accompanied
by a minor release increment, and therefore may only be included in a release following an appropriate
community and PRC consultation process (GA4GH Product Development 32).

Releases
A release of a technical specification contains all of the content of the specification repository. This includes all
features, including data models (source and derived artifacts), linked upstream dependencies, documentation,
implementation guidance, validation tests, and examples. Releases provide a comprehensive and static
snapshot of a technical specification that may be referenced for adoption by downstream products and
implementations.

Pre-releases
In order to support continuous development of a technical specification, pre-release snapshots are allowed and
must use the SemVer syntax for pre-releases. Pre-release snapshots may be created for purpose at any time
by the product leads. Examples of pre-release snapshots following this process may be found in the VRS
repository.

https://www.ga4gh.org/our-products/development-and-approval-process/#section_7
https://www.ga4gh.org/our-products/development-and-approval-process/#section_7
https://www.ga4gh.org/our-products/development-and-approval-process/#section_7:~:text=32.%20Public%20comment,reduced%20or%20omitted.
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.1ent9dk649ub
https://docs.google.com/document/d/1xPFXRF7_Ppe5SDBHTBa1E-MBHHNtoc1Q-jZ1olOrtc4/edit?tab=t.0#heading=h.1jbzkl8z59lm
https://github.com/ga4gh/vrs/releases
https://github.com/ga4gh/vrs/releases

	TASC Technical Specification Development
	Document Purpose
	Alignment with the GA4GH Product Development Processes

	Feature Maturity Levels
	Maturity Level Criteria
	Maturity Advancement Process
	Developing a Draft Product Feature
	Advancing from Draft to Trial Use
	Advancing from Trial Use to Normative

	Data Class Inheritance and Property Maturity
	Communicating Maturity Level

	Product Feature Development Process
	Discuss Issues
	Gather Requirements
	Propose Solutions
	Develop Product Feature

	Specification Releases and Versioning
	Versioning
	Major Version Increment
	Minor Version Increment
	Patch Version Increment

	Releases
	Pre-releases

